Segmentation of confocal microscope images of cell nuclei in thick tissue sections.
نویسندگان
چکیده
Segmentation of intact cell nuclei from three-dimensional (3D) images of thick tissue sections is an important basic capability necessary for many biological research studies. However, segmentation is often difficult because of the tight clustering of nuclei in many specimen types. We present a 3D segmentation approach that combines the recognition capabilities of the human visual system with the efficiency of automatic image analysis algorithms. The approach first uses automatic algorithms to separate the 3D image into regions of fluorescence-stained nuclei and unstained background. This includes a novel step, based on the Hough transform and an automatic focusing algorithm to estimate the size of nuclei. Then, using an interactive display, each nuclear region is shown to the analyst, who classifies it as either an individual nucleus, a cluster of multiple nuclei, partial nucleus or debris. Next, automatic image analysis based on morphological reconstruction and the watershed algorithm divides clusters into smaller objects, which are reclassified by the analyst. Once no more clusters remain, the analyst indicates which partial nuclei should be joined to form complete nuclei. The approach was assessed by calculating the fraction of correctly segmented nuclei for a variety of tissue types: Caenorhabditis elegans embryos (839 correct out of a total of 848), normal human skin (343/362), benign human breast tissue (492/525), a human breast cancer cell line grown as a xenograft in mice (425/479) and invasive human breast carcinoma (260/335). Furthermore, due to the analyst's involvement in the segmentation process, it is always known which nuclei in a population are correctly segmented and which not, assuming that the analyst's visual judgement is correct.
منابع مشابه
Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections.
Segmentation of intact cell nuclei in three-dimensional (3D) images of thick tissue sections is an important basic capability necessary for many biological research studies. Because automatic algorithms do not correctly segment all nuclei in tissue sections, interactive algorithms may be preferable for some applications. Existing interactive segmentation algorithms require the analyst to draw a...
متن کاملComputerized Reconstruction of Pulpal Blood Vessels Examined under Confocal Microscope
The purpose of this study was the evaluation of 3 different histological methods for studying pulpal blood vessels in combination with 2 types of confocal microscope and computer assisted 3-dimensional reconstruction. 10 human, healthy, free of restorations or caries teeth that were extracted for orthodontic reasons were used. From these teeth, the pulp tissues of 5 were removed, fixed in forma...
متن کاملConfocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology.
Precise removal of nonmelanoma cancers with minimum damage to the surrounding normal skin is guided by the histopathologic examination of each excision during Mohs micrographic surgery. The preparation of frozen histopathology sections typically requires 20-45 min per excision. Real-time confocal reflectance microscopy offers an imaging method potentially to avoid frozen histopathology and prep...
متن کاملLight and electron microscope of grass carp (Ctenopharyngodon idella) organs following exposure to various sublethal concentrations of diazinon
Histopathological effects of different sublethal concentrations (1, 2 and 4 mg/l) of diazinon, an organophosphorus pesticide, on gill, liver, spleen and kidney of grass carp (Ctenopharyngodon idella) were studied after 1, 7, 15, 30 and 45 days post-exposing fishes weighting 850 ± 155 g to the toxicant for 12 hours at 18-22ºC. In addition, tissues of nostril were examined for transmission electr...
متن کاملReal-time in vivo confocal fluorescence microscopy – possibilities and limitations
The confocal scanning microscope is well-known for its ability to perform optical sectioning: a thin plane or section within a thick turbid medium is non-invasively imaged with high resolution and contrast [1]. Since its invention and development, confocal scanning microscopes have been extensively used in biomedicine for imaging human and animal tissues in vivo. Nuclear, cellular and morpholog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of microscopy
دوره 193 Pt 3 شماره
صفحات -
تاریخ انتشار 1999